Terminale spécialité jeudi 22 février

Devoir de mathématiques nº 6 (2 heures)

La qualité de la rédaction, la clarté et la présentation des raisonnements entreront pour une part importante dans la notation.

L'usage de la calculatrice est autorisé.

Exercice 1: (5 points)

Les questions suivantes sont indépendantes.

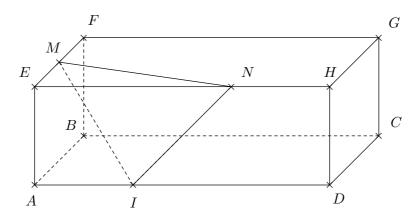
- 1. Calculer l'expression de la fonction dérivée de f où $f(x) = \ln(e^{-2x} + 1)$ pour tout réel x.
- 2. Rappeler la valeur de $\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right)$, puis calculer $\lim_{x \to +\infty} \left(\frac{\ln(x)}{3x^2+1} \right)$.
- 3. g est la fonction défnie sur]-2 ; 2[par $g(x)=\frac{x}{4-x^2}$. Déterminer la primitive de g sur]-2 ; 2[, notée G, qui vaut 6 en $\sqrt{3}$.
- 4. La population d'une espèce en voie de disparition est surveillée de près dans une réserve naturelle. On modélise l'effectif de la population de l'espèce par la suite (u_n) où u_n représente l'effectif de la population au début de l'année 2020+n.

On admet que pour tout entier naturel n, $u_n = 1000 (1 + 0.9^n)$.

Déterminer par un <u>calcul</u>, en quelle année le nombre d'individus de cette espèce sera strictement inférieur à 1020 pour la première fois.

Exercice 2: (7 points)

On considère le pavé droit $\overrightarrow{ABCDEFGH}$ tel que $\overrightarrow{AB} = 1, AE = 1$ et AD = 3. I est le point tel que $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AD}, M$ est le milieu du segment [EF] et N est le point défini par $\overrightarrow{EN} = \frac{2}{3}\overrightarrow{EH}$.



L'espace est muni du repère orthonormé $\left(A\;;\;\overrightarrow{AI}\;,\;\overrightarrow{AB}\;,\;\overrightarrow{AE}\right)$. Par exemple, le point N a pour coordonnées $(2\;;\;0\;;\;1)$ dans ce repère.

- 1. Donner sans justifier les coordonnées des points I et M.
- 2. a) Calculer le produit scalaire des vecteurs \overrightarrow{IM} et \overrightarrow{IN} .
 - b) En déduire la nature du triangle MIN puis calculer son aire.
- 3. a) Montrer que le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$ est un vecteur normal au plan (MIN).
 - b) Montrer qu'une équation cartésienne du plan (MIN) est x+4y-z-1=0.
- 4. On considère le point C (3 ; 1 ; 0). L'objectif de cette question est de déterminer la distance du point C au plan (MIN).

- a) Déterminer une représentation paramétrique de la droite Δ perpendiculaire au plan (MIN) passant par le point C.
- b) Calculer les coordonnées du point K, projeté orthogonal du point C sur le plan (MIN).
- c) Montrer que la distance du point C au plan (MIN) est égale à $\sqrt{2}$.
- 5. Calculer le volume V de la pyramide MINC.

On rappelle que le volume V d'une pyramide est donné par la formule $V=\frac{1}{3}\times \mathscr{B}\times h$, où \mathscr{B} est l'aire d'une base et h la hauteur associée à cette base.

Exercice 3: (8 points)

Soit f la fonction définie et dérivable sur l'intervalle]0; $+\infty[$ par $f(x)=\frac{(x-3)\ln(x)}{x}$. On note $\mathscr C$ sa courbe représentative dans un repère orthogonal.

Partie A. Étude d'une fonction auxiliaire

Soit g la fonction définie et dérivable sur]0; $+\infty[$ par $g(x)=x-3+3\ln(x)$.

- 1. Calculer les limites de g en 0 et $+\infty$.
- 2. Calculer g'(x), étudier le sens de variation de la fonction g et dresser son tableau de variation complet sur]0; $+\infty[$.
- 3. Démontrer qu'il existe un unique réel α appartenant à]0; $+\infty[$ tel que $g(\alpha)=0$. On donnera une valeur approchée de α à 10^{-2} près.
- 4. Déterminer le signe de g(x) sur]0; $+\infty[$ en fonction de α .

Partie B. Étude de la fonction f

- 1. Résoudre sur]0; $+\infty[$ l'équation f(x)=0.
- 2. Calculer la limite de f en 0. Que peut-on en déduire graphiquement?
- 3. On note f' la fonction dérivée de f sur]0; $+\infty[$. Montrer que pour tout réel x strictement positif, $f'(x)=\frac{g(x)}{x^2}$.
- 4. En déduire le sens de variation de f et dresser son tableau de variation sur]0 ; $+\infty[$. On admettra le résultat suivant: $\lim_{x\to +\infty} f(x) = +\infty$

